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FINDING THE NEAREST POSITIVE-REAL SYSTEM∗

NICOLAS GILLIS† AND PUNIT SHARMA†

Abstract. The notion of positive realness for linear time-invariant (LTI) dynamical systems,
equivalent to passivity, is one of the oldest in system and control theory. In this paper, we consider
the problem of finding the nearest positive real (PR) system to a non-PR system: given an LTI
control system defined by Eẋ = Ax + Bu and y = Cx + Du, minimize the Frobenius norm of
(∆E ,∆A,∆B ,∆C ,∆D) such that (E + ∆E , A + ∆A, B + ∆B , C + ∆C , D + ∆D) is a PR system.
We first show that a system is extended strictly PR if and only if it can be written as a strict
port-Hamiltonian system. This allows us to reformulate the nearest PR system problem into an
optimization problem with a simple convex feasible set. We then use a fast gradient method to
obtain a nearby PR system to a given non-PR system and illustrate the behavior of our algorithm
with several examples. This is, to the best of our knowledge, the first algorithm that computes a
nearby PR system to a given non-PR system that (i) is not based on the spectral properties of related
Hamiltonian matrices or pencils, (ii) allows one to perturb all matrices (E,A,B,C,D) describing the
system, and (iii) does not make any assumption on the original given system.
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1. Introduction. In this paper, we consider m-input m-output linear time-
invariant (LTI) control systems of the form

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t)
(1.1)

on the unbounded interval t ∈ [t0,∞). Here, A,E ∈ Rn,n, B ∈ Rn,m, C ∈ Rm,n, and
D ∈ Rm,m are given matrices, x(t) is the vector of state variables, u(t) is the vector
of inputs, and y(t) is the vector of outputs. The linear system is called a standard
system when E = In, where In is the identity matrix of size n× n, and a descriptor
system when E is not invertible. We use the matrix quintuple (E,A,B,C,D) to refer
to a system in the form (1.1).

As mentioned in [13], the restriction to systems (1.1) with the same number of
inputs and outputs is necessary to have positive real (PR) systems, which are the focus
of this paper. Indeed, positive realness of an LTI dynamical system is equivalent to
passivity, which means that the system does not generate energy: the system (1.1) is
called passive if there exists a nonnegative scalar valued function V, called the storage
function, such that V(0) = 0 and the dissipation inequality

(1.2) V(x(t1))− V(x(t0)) ≤
∫ t1

t0

y(t)Tu(t)dt
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holds for all admissible u, t0, and t1 ≥ t0; see, for example, [2, 28]. The energy is
defined via the inner product of the input and output vectors u(t) and y(t) of the
system hence these vectors need to be of the same length.

Given (E,A,B,C,D), the goal of this paper is to find (∆E ,∆A,∆B ,∆C ,∆D)
with minimum (weighted) Frobenius norm1 such that (E+ ∆E , A+ ∆A, B+ ∆B , C+
∆C , D + ∆D) is a PR system. We will refer to this problem as the nearest PR
system problem. We will also consider the case of nearest standard PR systems
when E = In imposing ∆E = 0. Since passivity and positive realness are equivalent
for LTI systems, the distance to positive realness has direct applications in passive
model approximations. For example, when a real-world problem is approximated by
a model (1.1), the passivity of the physical system may not be preserved, that is,
the approximation process (for example, finite element or finite difference models,
linearization, or model order reduction) makes the passive system nonpassive. The
nonpassive system has to be approximated by a nearby passive system by perturbing
E,A,B,C, and D.

Several algorithms tackle this problem using the spectral properties of the related
Hamiltonian/skew-Hamiltonian matrices or pencils for the input systems that are
asymptotically stable, controllable, observable, and almost passive; see [19, 38, 51,
49] and the references therein. The algorithms in [19] and [38] impose additional
assumptions on the input system, namely, E = In and D +DT nonsingular, and are
restricted to perturbations of the matrix C only. These algorithms are based on the
displacement of the imaginary eigenvalues of the related Hamiltonian matrix. The
methods in [51] and [49] can deal with general systems (i.e., when E is not identity)
by using the spectral properties of (skew-)Hamiltonian pencils, but they only allow
perturbations in either B or C. In [9], authors allow perturbations in all matrices
but E and assume that the system is almost passive. Their approach is based on the
perturbation of a general nondissipative system to enforce dissipativity using first-
order spectral perturbation results for para-Hermitian pencils. As far as we know, no
algorithm exists that does not make any assumption on the input system and that
allows perturbations of all matrices (E,A,B,C,D) describing the system.

The nearest PR system problem is complementary with the distance to nonpas-
sivity for control systems; see [36] for complex standard systems. These problems are
closely related to the Hamiltonian matrix nearness problems [1, 20]. For example, it
is well known [8, 3] that an asymptotically stable standard system (1.1) (i.e., with
E = In) with positive definite D +DT is PR if and only if the Hamiltonian matrix

(1.3) H =

[
A−B(D +DT )−1C −B(D +DT )−1BT

CT (D +DT )−1C −(A−B(D +DT )−1C)T

]
has no purely imaginary eigenvalues. Therefore one can use the minimal perturbations
from [1] and [20] that moves all eigenvalues of H away from the imaginary axis and
find (if they exist) the corresponding perturbations (∆A,∆B ,∆C ,∆D) making the
system passive. The latter step, however, is in general not possible as it involves
dealing with the additional block structure in the Hamiltonian matrix hence solving
highly nonlinear matrix equations [20]. It is an open problem to extract system

1The choice for the (weighted) Frobenius norm is twofold: (i) it is arguably one of the most
popular norms used to measure distances, and (ii) it is smooth and hence will make the optimization
problem easier to tackle. However, our algorithm can easily be extended to any other smooth
objective function, e.g., any (weighted) `p norm with 1 < p < +∞ (only the computation of the
gradient of the corresponding objective function will change).
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matrices (A,B,C,D) from a given Hamiltonian matrix that has no purely imaginary
eigenvalues, that is, to express the Hamiltonian matrix as a matrix of the form (1.3).

In this paper, we compute a nearby PR system to a given non-PR system using
the set of linear port-Hamiltonian (PH) systems. Our algorithm is based on the
generalization of the results from [17] and [16], where authors used the structure of PH
systems to find a nearby stable standard system and a nearby stable descriptor system
to an unstable one, respectively. As opposed to the previously proposed methods, our
algorithm is not based on the spectral properties of Hamiltonian matrices or pencils
and can be applied to any given LTI dynamical system.

The paper is organized as follows. In section 2, we introduce the notation and
definitions that will be used throughout the paper. In section 3, we show that a
system is extended strictly PR if and only if it can be written as a strict PH system
(Theorem 3.9). This allows us to reformulate, in section 4, the nearest PR system
problem into an optimization problem with a simple convex feasible set. In section 5,
we use a fast gradient method to tackle our reformulation and obtain a nearby PR
system to a given non-PR system for both standard and general systems. We also
propose several initialization strategies. The behavior of the algorithm is analyzed on
several examples in section 6.

2. Notation, preliminaries, and problem definition. In the following, we
denote by ‖ · ‖F the Frobenius norm and by ∗ the complex conjugate transpose. We
write A � 0 (resp., A � 0) if A is symmetric positive definite (resp., semidefinite).
The real part of s ∈ C is denoted by Re s and j stands for the imaginary number.

In the next two subsections, we define admissible and PR systems (sections 2.1
and 2.2). This allows us to give a formal definition of the nearest PR system problem
in section 2.3. In section 2.4, we briefly describe PH systems that will be our main
tool to reformulate the nearest PR system problem.

2.1. Admissible systems. The system (1.1) is called regular if the matrix pair
(E,A) is regular, that is, if det(λE − A) 6= 0 for some λ ∈ C; otherwise it is called
singular. For a regular matrix pair (E,A), the roots of the polynomial det(zE − A)
are called finite eigenvalues of the pencil zE − A or of the pair (E,A). A regular
pencil zE −A has ∞ as an eigenvalue if E is singular.

A regular real matrix pair (E,A) (with E,A ∈ Rn,n) can be transformed to
Weierstraß canonical form [14], that is, there exist nonsingular matrices W,T ∈ Cn,n
such that

E = W

[
Iq 0
0 N

]
T and A = W

[
J 0
0 In−q

]
T,

where J ∈ Cq,q is a matrix in Jordan canonical form associated with the q finite
eigenvalues of the pencil zE − A and N ∈ Cn−q,n−q is a nilpotent matrix in Jordan
canonical form corresponding to n − q times the eigenvalue ∞. If q < n and N has
degree of nilpotency ν ∈ {1, 2, . . .}, that is, Nν = 0 and N i 6= 0 for i = 1, . . . , ν − 1,
then ν is called the index of the pair (E,A). If E is nonsingular, then by convention
the index is ν = 0; see, for example, [32, 48]. The index ν does not depend on the
transformation to canonical form [27, Lemma 2.10].

The matrix pair (E,A) ∈ (Rn,n)2 is said to be stable (resp., asymptotically stable)
if all the finite eigenvalues of zE − A are in the closed (resp., open) left half of the
complex plane and those on the imaginary axis are semisimple. The matrix pair (E,A)
is said to be admissible if it is regular, of index at most one, and asymptotically stable.
A dynamical system (E,A,B,C,D) in the form (1.1) is called (asymptotically) stable
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if the matrix pair (E,A) is (asymptotically) stable. Similarly, it is called admissible
if the matrix pair (E,A) is admissible.

2.2. Positive real systems. To define PR systems, throughout this section we
assume that the system (1.1) is regular. The system (1.1) can be described by its
transfer function G(s) : C→ (C ∪ {∞})m,m, defined by

(2.1) G(s) := C(sE −A)−1B +D, s ∈ C.

Conversely, given a rational function G(s) : C→ (C∪{∞})m,m, any representation of
G(s) in the form (2.1) is called a realization of G(s). A realization is called minimal
if the matrices A and E are of the smallest possible dimension. In this case the poles
of the transfer function G(s) are exactly the eigenvalues of the pencil zE −A.

Positive realness is a well-known concept in system, circuit, and control theory.
In control theory, the PR systems have a significant role in stability analysis [37, 2];
see also [26] and the references therein for applications. The PR systems have been
defined in several different ways in the literature; see [2, 52, 29, 39, 25, 21, 23] for
standard linear systems, [50, 13, 28] for continuous-time descriptor systems, and [54]
for continuous- and discrete-time descriptor systems. We follow [39] and define the
positive realness in the frequency domain as follows.

Definition 2.1. The system (1.1) is said to be
(1) PR if its transfer function G(s) satisfies

(a) G(s) has no pole in Re s > 0 and
(b) G(s) +G(s)∗ � 0 for all s such that Re s > 0;

(2) strictly positive real (SPR) if its transfer function G(s) satisfies
(a) G(s) has no pole in Re s ≥ 0 and
(b) G(jw) +G(jw)∗ � 0 for w ∈ [0,∞);

(3) extended strictly positive real (ESPR) if it is SPR and G(j∞)+G(j∞)∗ � 0.

Note that condition (a) in the definition of SPR is equivalent to the system being
asymptotically stable. An asymptotically stable system (1.1) with a minimal realiza-
tion is passive (resp., strictly input passive) if and only if it is PR (resp., ESPR). For
more details of these facts, we refer to [2] and [12, pp. 174–175]. Furthermore, ESPR
implies SPR, which further implies PR.

Note also that G(s) = C(sE−A)−1B+D is a rational function and has a power
series expansion about s =∞ of the form

(2.2) G(s) = C(sE −A)−1B +D =

∞∑
i=−p

Hi

si
,

where Hi are real matrices of size m. If s = ∞ is not a pole of G(s) (i.e., when E
is invertible), then p = 0 and G(∞) = D = H0. This implies that for a standard
system (In, A,B,C,D) with D+DT � 0, the notions of SPR and ESPR are the same,
because G(j∞) +G(j∞)∗ � 0 if and only if D+DT � 0. In the descriptor case (i.e.,
when E is not invertible), then the order of the pole at s =∞ is greater than or equal
to one (i.e., p ≥ 1 in (2.2)). In this case, G(∞) (if it exists) is not necessarily equal
to D. To illustrate this consider the system
(2.3)

E =

 1 0 0
0 0 0
0 0 0

 , A =

 −1 0 0
0 1 0
0 0 1

 , B =

 1
1
α

 , C =

 1
1
1

T , D =
1

2
,
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where α is a constant. This is an admissible system with the transfer function

G(s) =
1

s+ 1
− α− 1

2
,

so that

G(jw) +G(jw)∗ =
2

w2 + 1
− 2α− 1.

Therefore, for α = − 1
2 , the system is SPR but not ESPR despite D � 0.

Remark 1. We have chosen to define PR and ESPR systems in the frequency
domain for regular descriptor systems and then used their LMI characterization to
compute a nearby regular passive system to a given nonpassive one; see sections 3
and 4. However, it is possible to define passivity in the time domain for a general
system with no assumptions such as regularity, controllability, and minimality [24].
This could be a direction for further research to use the results in [24] to define
passivity in the time domain and use their equivalent LMI characterization to find a
nearby passive system under fewer assumptions. This could also be a way to avoid
the regularity assumption on PR systems.

2.3. Nearest positive-real system problems. We can now define the nearest
system problems that will be studied in the following sections. Let us formulate the
problem in a rather generic way.

Problem. For a given system (E,A,B,C,D) and a given set D, find the nearest
system (Ẽ, Ã, B̃, C̃, D̃) ∈ D to (E,A,B,C,D), that is, solve

inf
(Ẽ,Ã,B̃,C̃,D̃)∈D

F(Ã, B̃, C̃, D̃, Ẽ),

where
(2.4)

F(Ã, B̃, C̃, D̃, Ẽ) = ‖A− Ã‖2F + ‖B − B̃‖2F + ‖C − C̃‖2F + ‖D − D̃‖2F + ‖E − Ẽ‖2F .

We will consider the following two variants of this problem:
(1) Nearest PR system (P): D = S, where S is the set of all PR systems

(Ẽ, Ã, B̃, C̃, D̃).
(2) Nearest ESPR system (Pe): D = Se, where Se is the set of all admissible

ESPR systems (Ẽ, Ã, B̃, C̃, D̃) with D̃ + D̃T � 0.
We will also consider the variants of (P) and (Pe) for standard systems with the

additional constraints that Ẽ = E = In.
These problems are challenging because the feasible sets S and Se are unbounded,

highly nonconvex, and neither open nor closed. To see this, let us consider the system
from (2.3). This system is ESPR with α = −1, and thus (E,A,B,C,D) ∈ Se ⊆ S.
For

∆E =

 ε1 0 0
0 ε2 0
0 0 0

 and ∆A =

 δ 0 0
0 0 0
0 0 0

 ,
the transfer function of the perturbed system (E + ∆E , A+ ∆A, B, C,D) is given by

G(s) =
1

s(1 + ε1) + (1− δ)
+

1

sε2 − 1
− α+

1

2
,
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hence

G(jw) +G(jw)∗ =
2(1− δ)

(1− δ)2 + w2(1 + ε1)2
− 2

1 + w2ε22
− 2α+ 1.

For δ = ε1 = 0 and ε2 > 0, the perturbed system is regular, of index one, but has
two finite eigenvalues λ1 = −1 and λ2 = 1

ε2
> 0. This implies that the system is

not stable, hence not PR. This shows that S and Se are not open. For ε1 = −δ with
0 ≤ δ < 1 and ε2 = 0, the perturbed system is ESPR. The perturbed matrix pair
(E + ∆E , A+ ∆A) becomes singular as δ → 1 so that the perturbed system becomes
non-PR as δ → 1. This shows that S and Se are not closed. Further the sets S and
Se are nonconvex: considering the systems

Σ1 =

(
I2,

[
−0.3 10

0 −0.3

]
︸ ︷︷ ︸

A1

,

[
1
1

]
,

[
1
0

]T
,

1

2

)
and

Σ2 =

(
I2,

[
−0.3 0
10 −0.3

]
︸ ︷︷ ︸

A2

,

[
1
1

]
,

[
0
1

]T
,

1

2

)
,

it is easy to check that Σ1,Σ2 ∈ Se ⊂ S but γΣ1 + (1 − γ)Σ2 /∈ S for γ = 1
2 since

1
2A1 + 1

2A2 has an eigenvalue λ = 4.7 in the right half complex plane.
To address the challenging problems defined above, we aim to reformulate them

so that it is easier to derive optimization algorithms. An important property of such a
reformulation is that the projection onto the feasible set can be performed efficiently.
Such a reformulation exists and can be obtained by extending the results from [17]
(resp., [16]) that used PH systems for computing the nearest stable matrix (resp.,
matrix pair).

2.4. Port-Hamiltonian systems. An LTI input-state-output PH system can
be written as

Eẋ(t) = (J −R)Qx(t) + (F − P )u(t),

y(t) = (F + P )TQx(t) + (S +N)u(t),
(2.5)

where the following conditions must be satisfied:
• The matrix Q ∈ Rn,n is invertible, E ∈ Rn,n, and QTE = ETQ � 0. The

function x → 1
2x

TQTEx is the Hamiltonian and describes the energy of the
system.

• The matrix JT = −J ∈ Rn,n is the structure matrix that describes flux
among energy storage elements.

• The matrix R ∈ Rn,n with R � 0 is the dissipation matrix and describes the
energy dissipation/loss in the system.

• The matrices F ± P ∈ Rn,m are the port matrices describing the manner in
which energy enters and exits the system.

• The matrix S + N , with 0 � S ∈ Rm,m and NT = −N ∈ Rm,m, describes
the direct feed-through from input to output.

• The matrices R, P , and S satisfy

K =

[
R P
PT S

]
� 0.
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In the following, we will refer to K as the cost matrix of the PH system, because it
corresponds to the cost matrix of an infinite horizon linear quadratic optimal control
problem. For K � 0, we refer to (2.5) as a strict PH system. We note that this
definition of PH system is slightly more restrictive than that of PH systems in [5],
where it is not required for the matrix Q to be invertible.

PH systems generalize the classical Hamiltonian systems and recently have re-
ceived a lot attention in energy-based modeling; see [42, 43, 45, 46, 47, 44] for some
major references. The Hamiltonian H(x) = 1

2x
TQTEx defines a storage function

associated with the supply rate y(t)Tu(t) and satisfies

(2.6) H(x(t1))−H(x(t0)) ≤
∫ t1

t0

y(t)Tu(t)dt,

which guarantees the passivity of the system; see (1.2).
We note that regular PH systems are always stable (see [30, Lemma 3.1] for

standard PH systems and [16, Lemma 2] for descriptor PH systems): the matrix pair
(E, (J − R)Q) is a so-called dissipative Hamiltonian matrix pair. In particular, if
R � 0, then (E, (J − R)Q) is admissible; see [16] for more details and [30] and [31]
for various structured distances to asymptotic stability for complex PH systems and
real PH systems, respectively.

3. Key results for positive real systems. In this section, we study the link
between PR systems and PH systems. The main result of this section, which is
the main theoretical result of this paper, is to prove that a system is ESPR with
D + DT � 0 if and only if it can be written as a strict PH system; see Theorem 3.9
at the end of the section.

The positive realness of a system (1.1) can be characterized in terms of solutions
X to the following linear matrix inequalities (LMIs):[

ATX +XTA XTB − CT
BTX − C −D −DT

]
� 0 and ETX = XTE � 0.(3.1)

Theorem 3.1 (see [13, Theorem 3.1]). Consider a regular system (E,A,B,C,D)
in the form (1.1). If the LMIs (3.1) have a solution X ∈ Rn,n, then (E,A,B,C,D)
is PR.

The converse of Theorem 3.1 is true with some additional assumptions. In fact
the PR lemma for standard systems [2] proves that if a system is PR and minimal,
then the existence of a solution to the LMIs (3.1) is also necessary. Similarly, with
an additional condition, the PR lemma for descriptor systems [13] proves that the
existence of a solution to the LMIs (3.1) is also necessary for positive realness.

Theorem 3.1 gives an alternative way (compared to the one described in (2.6)) to
show that every PH system is PR by providing an explicit solution to (3.1), as shown
in the following theorem, which is a generalization of [44, Theorem 7.1], where only
standard systems are considered.

Theorem 3.2. Every regular PH system in the form (2.5) is PR.

Proof. Let (E,A,B,C,D) be a regular PH system with A = (J−R)Q, B = F−P ,
C = (F + P )TQ, and D = S + N , where JT = −J , NT = −N , [ R P

PT S
] � 0, Q is

invertible, and ETQ = QTE � 0. By Theorem 3.1, to prove that this system is PR,
it suffices to prove the existence of a solution X to the LMIs (3.1). It turns out that
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X = Q is one. In fact, we have[
ATQ+QTA QTB − CT
BTQ− C −D −DT

]
=

[
((J −R)Q)TQ+QT (J −R)Q QT (F − P )− ((F + P )TQ)T

(F − P )TQ− (F + P )TQ −(S +N)− (S +N)T

]
= −2

[
QTRQ QTP
PTQ S

]
= −2

[
QT 0
0 Im

] [
R P
PT S

] [
Q 0
0 Im

]
� 0

since [ R P
PT S

] � 0.

Note that the proof of Theorem 3.2 does not require Q to be invertible. In the
following, a necessary and sufficient condition for a system in the form (1.1) to be
ESPR is obtained in terms of the existence of a solution of the LMIs (3.1). We will
use this result to characterize the set of all admissible ESPR systems in terms of PH
systems.

Theorem 3.3 (see [54, Theorem 2]). Let (E,A,B,C,D) define a system (1.1).
Then it is admissible, ESPR, and satisfying D +DT � 0 if and only if there exists a
solution X to the LMIs

(3.2)

[
ATX +XTA XTB − CT
BTX − C −D −DT

]
≺ 0 and ETX = XTE � 0.

Using Theorems 3.2 and 3.3, we prove the following result.

Theorem 3.4. Every PH system in the form (2.5) with a positive definite cost
matrix is admissible and ESPR.

Proof. Let Σ = (E, (J − R)Q, (F − P ), (F + P )TQ,S + N) be a PH system in
the form (2.5) with the cost matrix K = [ R P

PT S
] � 0. Following the same steps as in

Theorem 3.2, one can show that X = Q satisfies the LMIs in (3.2) because K � 0
and Q is invertible. Hence, by Theorem 3.3, Σ is admissible and ESPR.

We note that the admissibility of the PH system Σ in Theorem 3.4 also follows
by the fact that (E, (J − R)Q) is a dissipative Hamiltonian (DH) matrix pair with
R � 0 [16, Theorem 4]. We recall from [16, Definition 2] that (E,A) is called a DH
matrix pair if there exists an invertible matrix Q, JT = −J and R � 0 such that
QTE � 0 and A = (J − R)Q. In order to show that the converse of Theorem 3.4 is
also true, we define the PH-form for a system (1.1).

Definition 3.5. A system (E,A,B,C,D) is said to admit a PH-form if there
exists a PH system as defined in (2.5) such that

A = (J −R)Q, B = F − P, C = (F + P )TQ, and D = S +N.

In view of Theorem 3.4, if (E,A,B,C,D) admits a PH-form with positive definite
cost matrix, then it is admissible and ESPR. Similarly, by Theorem 3.2, it follows that
every regular system (E,A,B,C,D) that admits a PH-form, is PR. However, the
converse, that is, every PR system admits a PH-form, is not true, as there exist PR
systems with D +DT ≺ 0, for instance, (2.3) with α = − 3

2 and replacing D = −1/2.
We now show that whenever the LMIs (3.1) have an invertible solution X, the

system (E,A,B,C,D) admits a PH-form. The main part of its proof is identical
to [44, Theorem 7.1], which showed a similar result for standard systems. Unlike [44],
we assume X is invertible, which allows us to give an explicit PH-form.
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Theorem 3.6. Let Σ = (E,A,B,C,D) be a system in the form (1.1). If the
LMIs (3.1) have an invertible solution X ∈ Rn,n, then Σ admits a PH-form.

Proof. Let X be an invertible solution of the LMIs (3.1). Define

J :=
AX−1 − (AX−1)T

2
, R := −AX

−1 + (AX−1)T

2
, Q := X, S :=

1

2
(D+DT ),

(3.3) N :=
1

2
(D −DT ), F :=

1

2
(B +X−1CT ), and P :=

1

2
(−B +X−1CT ).

Let us show that the matrices J,R,Q, F, P,N , and S provide a PH-form for Σ. We
have

(J −R)Q = A, F − P = B, (F + P )TQ = C, and S +N = D.

Further, we have that ETQ � 0 (using the second LMI in (1.1)), JT = −J , NT = −N ,
and

K =

[
R P
PT S

]
= −1

2

[
AX−1 +X−1AT −B +X−1CT

−BT + CX−1 −D −DT

]
= −1

2

[
−X−1 0

0 Im

] [
ATX +XA XB − CT
BTX − C −D −DT

] [
−X−1 0

0 Im

]
� 0,

which follows from the first LMI in (3.1).

For standard systems, [4, Corollary 2] shows that every minimal PR system
(In, A,B,C,D) is equivalent to a system in PH-form, that is, there exist invertible
matrices T ∈ Rn,n and V ∈ Rm,m such that the transformed system

(In, T
−1AT, T−1BV, V TCT, V TDV )

admits a PH-form. Theorem 3.6 implies a stronger result: a minimal PR standard
system itself admits a PH-form (no transformation is necessary).

Corollary 3.7. If the system (In, A,B,C,D) is minimal and PR, then it admits
a PH-form.

Proof. This follows from the PR lemma for minimal PR standard systems [53,
p. 363] (which guarantees the existence of an invertible solution X of the LMIs (3.1))
and Theorem 3.6.

We note that as opposed to a standard PR system [53, p. 363], minimality of a
PR system does not guarantee the solvability of the LMIs (3.1) in the descriptor case.
For this to hold, an additional condition that D + DT � lims→∞

(
G(s) +G(s)T

)
is

also needed [13, Theorem 3.2].

Corollary 3.8. Every admissible and ESPR dynamical system (E,A,B,C,D)
with D +DT � 0 admits a PH-form with positive definite cost matrix.

Proof. By Theorem 3.3, there exists a solution X to the LMIs

(3.4)

[
ATX +XTA XTB − CT
BTX − C −D −DT

]
≺ 0 and ETX = XTE � 0.

This implies that ATX +XTA ≺ 0, and therefore X is invertible. The remainder of
the proof follows using the same arguments as that of Theorem 3.6 with the solution
X of the LMIs (3.4).
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In the following, we summarize several equivalent characterizations of a system
to be admissible and ESPR.

Theorem 3.9. Let Σ = (E,A,B,C,D) be a system in the form (1.1). Then the
following are equivalent:

(1) Σ is admissible and ESPR with D +DT � 0.
(2) There exists a solution X to the LMIs[

ATX +XTA XTB − CT
BTX − C −D −DT

]
≺ 0 and ETX = XTE � 0.

(3) Σ admits a PH-form with positive definite cost matrix.

Proof. This follows from Theorems 3.3 and 3.4 and Corollary 3.8.

In the next section, we reformulate the nearest ESPR system problem (Pe) using
the PH-form for an admissible ESPR system (E,A,B,C,D) with D + DT � 0. As
mentioned in section 2.2, for a standard ESPR system (In, A,B,C,D) we have that
D+DT � 0; thus the condition D+DT � 0 for standard systems is redundant. How-
ever, the PH-form characterization of an admissible ESPR descriptor system depends
on the existence of a solution of the LMIs (3.2) when D +DT � 0. This justifies the
restriction D +DT � 0 on defining the set Se for the nearest ESPR system problem
in section 2.3.

4. Reformulation of the nearest PR system problems. In this section,
we exploit the results obtained in the previous section and present a new framework
based on PH systems to attack (P) and (Pe) defined in section 2.3, as well as their
variants for standard systems.

Let us define the following two sets:
• The set SPH containing all systems (E,A,B,C,D) in PH-form, that is,

SPH := {(E,A,B,C,D) | (E,A,B,C,D) admits a PH-form}

=

{
(E, (J −R)Q,F − P, (F + P )TQ,S +N)

∣∣∣ JT = −J,NT = −N,

ETQ � 0, Q invertible,K =

[
R P
PT S

]
� 0

}
.

• The set S�0PH ⊂ SPH containing all systems (E,A,B,C,D) in strict PH-form,
that is,

S�0PH :=
{

(E, (J −R)Q,F − P, (F + P )TQ,S +N) ∈ SPH
∣∣∣ K � 0

}
.

By Theorem 3.9, Se = S�0PH .
We have discussed in section 3 that the set Se of all ESPR systems is neither open

nor closed and clearly the PH characterization of Se does not change this. In fact,
the sets SPH and S�0PH are neither closed (due to the constraint that Q is invertible)
nor open (due to the constraint ETQ � 0).

Since we want to work with a set onto which it is easy (and possible) to project,
we consider the closure SPH of SPH which is equal to the set SPH except that Q can

be singular. Moreover, we have that SPH = S�0PH . Therefore the values of the infimum
over the sets SPH , S�0PH , and SPH are the same. We have the following result.
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Theorem 4.1. Let (E,A,B,C,D) be a system in the form (1.1) and F be defined
as in (2.4). Then

(4.1) inf
(M,(J−R)Q,F−P,(F+P )TQ,S+N)∈SPH

F((J−R)Q,F−P, (F+P )TQ,S+N,M)

coincides with the infimum of (Pe) while it is an upper bound for the infimum of (P).

Proof. This follows directly from the fact that Se = S�0PH and Se ⊆ S.

We will refer to (4.1) as the nearest PH system problem. The same result holds
for the variants of (P) and (Pe) for standard systems since the only difference is that
M is imposed to be equal to E = In.

Remark 2. We note that for standard systems we have SPH ⊆ S; this is due to
Theorem 3.2 as its proof does not require Q to be invertible. In the descriptor case,
SPH could contain systems which are not regular. This shows that in this case a
feasible solution of (4.1) may not be a PR system. To rule out such situations, one
can impose the matrix R to satisfy R � δIn for some fixed small δ > 0, because in
this case (E, (J − R)Q) is a DH matrix pair with positive definite R and therefore
the system is guaranteed to be regular by [16, Corollary 1]. This does not make
the problem more complicated as the projection is still straightforward, but it gives
a nearby regular descriptor PH system (hence a PR system; see Theorem 3.2) to a
given system.

Remark 3. Although the value of the infimum in (4.1) coincides with the infimum
of (Pe), the solution of (4.1) may not solve problem (Pe), as the solution found may
not even be PR; see Remark 2. However, it is possible to obtain a nearby strict PH
system (hence admissible and ESPR system with D + DT � 0; see Theorem 3.9) by
rewriting (4.1) using lower bounds on the eigenvalues of matrix ETQ and K; see also
Remark 6.

5. Algorithmic solution to the nearest PH system problem. In this sec-
tion, we propose an algorithm to tackle (4.1). We analyze separately standard systems
when E = In and E is not subject to perturbation and general systems when E is
subject to perturbation.

5.1. Standard systems. For standard systems, M = E = In and (4.1) can be
simplified as follows:

inf
J,R,Q,F,P,S,N

‖A−(J−R)Q‖2F + ‖B−(F−P )‖2F + ‖C−(F +P )TQ‖2F + ‖D−(S+N)‖2F

such that JT = −J,Q � 0, NT = −N and

[
R P
PT S

]
� 0.(5.1)

For any given square matrix Z and any skew-symmetric matrix X, we have
(5.2)

‖Z −X‖2F =

∥∥∥∥ (Z + ZT )

2
+

(Z − ZT )

2
−X

∥∥∥∥2
F

=

∥∥∥∥ (Z + ZT )

2

∥∥∥∥2
F

+

∥∥∥∥ (Z − ZT )

2
−X

∥∥∥∥2
F

since symmetric and skew-symmetric matrices are orthogonal (their inner product is
zero). Therefore the infimum in (5.2) over all skew-symmetric matrices X is attained

when X = Z−ZT

2 , that is,

(5.3) min
XT=−X

‖Z −X‖F =

∥∥∥∥Z − (Z − ZT )

2

∥∥∥∥
F

.
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This implies that the optimal N in (5.1) is given by D−DT

2 since S is symmetric, so
that (5.1) can be simplified to

inf
J,R,Q,F,P,S

G(J,R,Q, F, P, S) such that JT = −J,Q � 0 and

[
R P
PT S

]
� 0,

(5.4)

where

G(J,R,Q, F, P, S) = ‖A− (J −R)Q‖2F + ‖B − (F − P )‖2F

+ ‖C − (F + P )TQ‖2F +

∥∥∥∥D +DT

2
− S

∥∥∥∥2
F

.

Similarly as was done in [17] to find the nearest stable matrix to an unstable one, we
develop a fast projected gradient method (FGM) to solve (5.4). FGM has the advan-
tage of being in general much faster than the standard projected gradient method [33],
[34, p. 90] (see section 6 for some examples), even in the nonconvex case [35], while
being relatively simple to implement as long as one can do the following:

• Compute the gradient: all the terms in the objective function are of the form
f(X) = ‖AX −B‖2F whose gradient is ∇Xf(X) = 2AT (AX −B).

• Project onto the feasible set: the projection onto the set {X : X = −XT }
is given in (5.3), while projection onto the set of positive semidefinite (PSD)
matrices can be computed using an eigenvalue decomposition [22].

For the sake of completeness, we describe in Algorithm 1 the variant of FGM
we use. Note that we have included a restarting procedure which is necessary in our
case since the objective function is not convex and hence FGM without restart is not
guaranteed to converge [15]. We have observed that, in most cases, Algorithm 1 does
not need to restart very often (in the numerical examples presented in section 6, it
restarts on average less than once every 1000 iterations). In our implementation,
we have also added the possibility of giving different importance to each term in the
objective function using nonnegative weights wi ≥ 0 (1 ≤ i ≤ 4) and minimizing

(5.5)

w1‖A−(J−R)Q‖2F +w2‖B−(F−P )‖2F +w3‖C−(F +P )TQ‖2F +w4

∥∥∥∥D+DT

2
−S
∥∥∥∥2
F

.

Parameter settings. For the initial step length, we use γ = 1/L, where L = ‖Q‖22
is the Lipschitz constant of the gradients of G with respect to J (and R). The reason
for this choice is that this step length would guarantee the decrease of the objective
function if we would only update J (or R) since the subproblem in J (and R) is
convex. Note that the Lipschitz constant of the gradients of G with respect to F
(resp., S) is L + 1 (resp., 1). Hence, except maybe for the variable Q, this value of
γ has a good order of magnitude while being simple to compute. In fact, computing
the Lipschitz constant of the full gradient of G is nontrivial and computationally
more expensive, while the Hessian of G is mostly block diagonal (only the variable Q
appears with other variables). We choose α1 = 0.5, which seems to work well in most
cases, although FGM can be quite sensitive to this parameter and it is sometimes
rewarding to try different values. In fact, even in the convex case, there is, as far as
we know, no theoretical recommendation on how to choose this value; it is problem
dependent. (We also tried α1 = 0.1, 0.9, which performed on average slightly worse
than α1 = 0.5.)
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Algorithm 1. FGM with restart.

Input: The (nonconvex) function f(x), the feasible set X , an initial guess x ∈ X , a
parameter α1 ∈ (0, 1), lower bound for the step length γ.

Output: An approximate solution x to the problem argminz∈X f(z).

1: y = x ; initial step length γ > γ.
2: for k = 1, 2, . . . do
3: % Keep the previous iterate in memory.
4: x̂ = x.
5: % Project the gradient step onto X , where PX (z) = argminz̃∈X ‖z − z̃‖.
6: x = PX

(
y − γ∇f(y)

)
.

7: % Check if the objective function f has decreased, otherwise decrease the step
length.

8: while f(x) > f(x̂) and γ ≥ γ do

9: γ = 2
3γ.

10: x = PX
(
y − γ∇f(y)

)
.

11: end while
12: % If the step length has reached the lower bound (f could not be decreased

from y), reinitialize y (the next step will be a regular gradient descent step).
13: if γ < γ then
14: Restart fast gradient: y = x; αk = α1.
15: Reinitialize γ at the last value for which it allowed decrease of f .
16: else
17: αk+1 = 1

2

(√
α4
k + 4α2

k − α2
k

)
, βk = αk(1−αk)

α2
k+αk+1

.

18: y = x+ βk (x− x̂).
19: end if
20: γ = 2γ.
21: end for

Remark 4 (closed form for F ). The optimal solution for the variable F in (5.4)
can be written in closed form,

F̂ = argminF ‖B − (F − P )‖2F + ‖CT −QT (F + P )‖2F
= (In +QQT )−1

(
P +B +QCT +QQTP

)
,(5.6)

since

1

2
∇F (‖F − (P +B)‖2F + ‖QTF − (CT +QTP )‖2F )

= (F − (P +B)) +Q(QTF − (CT +QTP )).

However, we did not inject F̂ in (5.4) as it makes the objective function very compli-

cated, in particular because of the term ‖CT −QT (F̂ + P )‖
2

F .

5.2. General systems. Similarly as for standard systems in (5.4), (4.1) can be
simplified to

inf
J,R,Q,M,F,P,S

G(J,R,Q, F, P, S) + ‖E −M‖2F(5.7)

such that JT = −J,MTQ � 0 and

[
R P
PT S

]
� 0.
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As opposed to (5.4), it is difficult to project on the feasible domain of (5.7) because
of the coupling constraint MTQ � 0. Moreover, this constraint was observed to
get standard optimization schemes stuck in suboptimal solutions; see [16, Example
3] for an example. Following the strategy used in [16], we introduce the variable
Z = MTQ so that MT = ZQ−1. This allows us to reformulate (5.7) into an equivalent
optimization problem with a simpler feasible set,

inf
J,R,Q,Z,F,P,S

G(J,R,Q, F, P, S) + ‖ET − ZQ−1‖2F(5.8)

such that JT = −J, Z � 0 and

[
R P
PT S

]
� 0,

for which we have implemented Algorithm 1 (the gradient of ‖ET − ZQ−1‖2F with
respect to Q is given in [16, Appendix A]). As for standard systems, we have also
added the possibility of using weights for the different terms in the objective function

as in (5.5) adding the term w5

∥∥ET − ZQ−1∥∥2
F

with w5 ≥ 0. For the initial step

length, we use γ = 1/L, where L = max(‖Q‖22, ‖Q−1‖
2
2) is the maximum between the

Lipschitz constants of the gradients of G with respect to J , R, and Z.

5.3. Initializations. Since we are dealing with nonconvex optimization prob-
lems, it is expected that choosing good initial points will be crucial to obtain good
solutions. This will be confirmed in the numerical experiments. In the next two sub-
sections, we propose several initialization strategies. We believe that designing other
initialization strategies is an important direction for further research, in particular,
taking advantage of the particular structure of the problem at hand.

5.3.1. Standard initialization. The first initialization, which we refer to as
“standard,” uses Q = In and P = 0. For these values of Q and P , the optimal
solutions for the other variables can be computed explicitly:

J =
(
A−AT

)
/2, R = P�

(
(−A−AT )/2

)
, S = P�

(
(DT +D)/2

)
, F =

(
B + CT

)
/2,

and Z = P�(ET ) for general systems. The notation P�(X) stands for the projection
of a matrix X on the cone of PSD matrices. This initialization has the advantage
of being very simple to compute while working reasonably well in many cases; see
section 6 for numerical experiments.

5.3.2. LMI-based initializations. Given a system that does not admit a PH-
form, the LMIs (3.1) will not have a solution. However, since we are looking for a
nearby system that will admit a solution to these LMIs, it makes sense to try to find
a solution X to nearby LMIs. We propose the following to relax the LMIs (3.1):

min
δ,X

δ2

such that

[
−ATX −XTA CT −XTB
C −BTX D +DT

]
+ δIn+m � 0,(5.9)

ETX + δIn � 0.

Let us denote (δ∗, X∗) an optimal solution of (5.9). By Theorem 3.6, if δ∗ = 0
and X∗ is invertible, then the system (E,A,B,C,D) admits a PH-form that can be
constructed explicitly; see (3.3). Moreover, as long as X∗ is invertible, the matrices
(J,R,Q, S,N, P, Z) can be constructed using (3.3) and projected onto the feasible set
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SPH to obtain an initial system in PH-form. We will refer to this initialization as
“LMIs + formula.” If one wants to obtain a better initial point, given Q = X∗, it
is possible to compute the matrices (J,R, S,N, P ) by solving a semidefinite program
(SDP):

(5.10) min
J,R,S,N,P

G(J,R,Q, F, P, S) such that JT = −J and

[
R P
PT S

]
� 0,

while taking Z = P�(ETQ) (as Q = X∗ can be ill-conditioned). We will refer to this
initialization as “LMIs + solve.” By construction, it provides an initial point with
smaller objective function value than LMIs + formula (at the cost of solving another
SDP).

We will see that the LMI-based initializations work well when the initial system
is close to being passive (that is, when δ∗ is small); otherwise, it may provide rather
bad initial points (see section 6 for some examples). However, in most applications,
the systems of interest are usually close to being passive (cf. The introduction); hence
we believe these initializations will be particularly useful in practice.

Remark 5 (finding the nearest stable matrix (pair)). Our proposed algorithm to
find the nearest PH system is a generalization of the algorithm of [17] (resp., [16])
to find the nearest stable matrix (resp., matrix pair). In fact, it can be used on the
system (I, A, [ ], [ ], [ ]) (resp., (E,A, [ ], [ ], [ ])), where [ ] is the empty matrix, to recover
a stable approximation of A (resp., (E,A)), not allowing (resp., allowing) perturbation
in E. However, for the nearest stable matrix problem, the algorithm of this paper
does not perform as well because authors in [17] used an additional heuristic, namely,
a scaling of the iterates (J,R,Q) to reduce the Lipschitz constant of the objective
function. Improving the performance of our algorithm using heuristics is a topic for
further research.

Note that the LMI-based initializations were not introduced in [17, 16] (only the
standard initialization was) and could be particularly useful to obtain better solutions,
especially when the input matrix (pair) is close to being stable.

6. Numerical experiments. Our code is available from https://sites.google.
com/site/nicolasgillis/ and the numerical examples presented below can be directly
run from this online code. All tests are preformed using MATLAB R2015a on a
laptop Intel Core i7-7500U CPU @2.9GHz, 24GB RAM. The algorithm runs in O(n3)
operations per iteration (assuming m ≤ n), including projections on the set of PSD
matrices, inversion of the matrix Q (for general systems) and all necessary matrix-
matrix products. Hence FGM can be applied on a standard laptop with n and m
up to a thousand. To solve the SDPs (5.9) and (5.10), we used the interior point
method SDPT3 (version 4.0) [40, 41] and use CVX as a modeling system [11, 18].
On a standard laptop, it can be solved for n up to about a hundred (it took about
4 minutes to solve problem (5.9) with n = 100 and m = 10). For larger problems,
it would be interesting to use first-order methods. This is a direction for further
research. Therefore, as of now, for large systems (n � 100), FGM can be used only
in combination with the standard initialization scheme.

In the first experiment (section 6.1), we will compare our FGM with the standard
projected gradient method (this is FGM restarted at each iteration) to show that
FGM converges significantly faster. In the second experiment (section 6.2), we apply
FGM on the small-scale problem from [51]. In the third experiment (section 6.3),
we use larger mass-spring-damper (MSD) systems. In all cases, we compare the
performance of the different initializations strategies from section 5.3. In the fourth

https://sites.google.com/site/nicolasgillis/
https://sites.google.com/site/nicolasgillis/
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experiment (section 6.4), we compare the deterministic initializations schemes with
random initializations, while in the last experiment (section 6.5) we compare the
initialization schemes on randomly generated systems.

6.1. Standard system from [7]. Consider the following standard LTI system
(E,A,B,C,D) from [7, section 6], where E = I4:

A =


−0.08 0.83 0 0
−0.83 −0.08 0 0

0 0 −0.7 9
0 0 −9 −0.7

 , B =

[
1 0 1 0
1 0 −1 0

]T
,

C =

[
0.4 0 0.4 0
0.6 0 1 0

]
, and D =

[
0.3 0
0 −0.15

]
.(6.1)

This system is asymptotically stable but not PR because the transfer function G(s)
does not satisfy the second condition in the Definition 2.1 of PR, e.g., for s = 1 + 2j.

Applying FGM on (5.4) with the standard initialization, we obtain (up to four
digits of accuracy)

Â =


−0.0810 0.8300 −0.4 −0.0104
−0.8301 −0.0799 0.0012 −0.2
−0.0021 0.0013 −0.8521 9.1
−0.0146 −0.9 −8.9861 −0.8512

 , B̂ =


0.9994 1.8

0.1 −0.9
0.9851 −0.8691
−0.0070 0.2

 ,
Ĉ =

[
0.4010 −0.1 0.4185 0.0073
0.5990 0.0017 0.8281 0.0158

]
, D̂ =

[
0.3089 −0.0647
−0.0647 0.4318

]
.

Figure 6.1 (right) displays the evolution of the objective function: FGM converges in
about half a second, while the gradient method requires about 5 seconds. However,
both methods converge to the same solution. This gives a nearby standard PR system
with error

‖A− Â‖
2

F + ‖B − B̂‖
2

F + ‖C − Ĉ‖
2

F + ‖D − D̂‖
2

F = 0.4411.

In terms of relative error for each matrix, we have

‖A−Â‖F
‖A‖F

= 1.68%,
‖B−B̂‖F
‖B‖F

= 6.60%,
‖C− Ĉ‖F
‖C‖F

= 13.41%,
‖D−D̂‖F
‖D‖F

= 175.62%.
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Fig. 6.1. Evolution of the objective function for FGM and GM for the system in section 6.1,
using the standard initialization.
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Note that the approximation error for D is rather large. The reason is twofold: (i) D
is indefinite and the symmetric part of D has to be approximated by a PSD matrix
(namely, S), hence the relative error is at least 0.15√

0.32+0.152
= 44.7% (this error can be

obtained by increasing the weight for D in the objective function), and (ii) the norm
of D compared to the other matrices (in particular A) is smaller, hence it implicitly
has less importance in the objective function.

To give more importance to A and B, we can choose, for example, the weights
w1 = 7/4, w2 = 7/4, w3 = 1/4 and w4 = 1/4 in the objective function (5.5). Doing
so, we get another nearby standard PR system with objective function 0.13, and with
the following relative error for each matrix:

‖A−Ã‖F
‖A‖F

= 0.36%,
‖B−B̃‖F
‖B‖F

= 1.08%,
‖C− C̃‖F
‖C‖F

= 19.79%,
‖D−D̃‖F
‖D‖F

= 197.13%.

Allowing perturbations in E, we obtain with FGM a nearby PR system with the
approximation error 0.1812 where weights are all equal to one (note that, as expected,
it is smaller than for the more constrained standard case with error 0.4411). Figure 6.1
(left) displays the evolution of the objective function; FGM and the gradient method
have behavior similar to the standard case. The relative errors are

‖E − Ê‖F
‖E‖F

= 11.49%,
‖A− Â‖F
‖A‖F

= 0.19%,
‖B − B̂‖F
‖B‖F

= 1.81%,

‖C − Ĉ‖F
‖C‖F

= 3.32%,
‖D − D̂‖F
‖D‖F

= 105.24%.

Similarly, choosing the weights w1 = 7/4, w2 = 7/4, w3 = 1/4, w4 = 1/4 and w5 = 1,
we obtain an objective function value of 0.07 and the relative errors are the following:

‖E − Ẽ‖F
‖E‖F

= 6.81%,
‖A− Ã‖F
‖A‖F

= 0.06%,
‖B − B̃‖F
‖B‖F

= 0.43%,

‖C − C̃‖F
‖C‖F

= 6.05%,
‖D − D̃‖F
‖D‖F

= 131.64%.

For this example, the LMI-based initializations from section 5.3.2 perform worse
and lead to solutions with larger error (see Table 6.2 later, which summarizes all the
results). The reason is that the original system is far from being in PH-form since
λmin(D) = −0.15; see the experiments in sections 6.3 and 6.5 for more insight on
these initializations.

6.2. Descriptor system from [51]. Consider the LTI system (E,A,B,C,D)
from [51] (see also [9]) where

E =


16 12 −4 14
14 8 4 −14
−14 8 −4 34

6 −4 0 −10

 , A =


6 −19 7 −9
11 3 −21 18
25 −9 35 −16
−27 6 −16 38

 ,(6.2)

B =
[
−0.6 1.0 0.2 −0.3

]T
, C =

[
3.2 1.4 2.6 1.4

]
, D = 0.105.

The matrix pair (E,A) is of index two with two finite eigenvalues −0.5±
√

2j hence
it is not admissible. This system is stable and remains stable if E and A are not
perturbed. However, it is highly sensitive to small perturbation in E and A because
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the matrix pair (E,A) has Jordan block at ∞; see, e.g., [10]. For example, replacing
E with E + 10−6In makes the pencil (E,A) unstable with an eigenvalue at 8002.

In [51], C is perturbed to Ĉ = [3.0876 1.4736 2.6 1.4]T with ‖C − Ĉ‖
2

F = 0.018 to
make the system passive.

FGM with the standard initialization obtains a nearby PR system (Ê, Â, B̂, Ĉ, D̂)
with approximation error 1.28 in 2 seconds, where the relative errors in the different
matrices are

‖E − Ê‖F
‖E‖F

= 1.26%,
‖A− Â‖F
‖A‖F

= 0.53%,
‖B − B̂‖F
‖B‖F

= 24.59%,

‖C − Ĉ‖F
‖C‖F

= 5.04%,
‖D − D̂‖F
‖D‖F

= 703.69%.

This error is not comparable to the one obtained by [51] because FGM provides
a PH system for which (Ê, Â) is admissible with four finite eigenvalues (namely,
−1.98± 9.06j, −0.50± 1.42j).

The initialization “LMIs + solve” provides a worse but reasonable solution with
error 12.47 (note that ‖E‖2F + ‖A‖2F + ‖B‖2F + ‖C‖2F + ‖D‖2F = 8764), while FGM
with initialization “LMIs + formula” performs very badly with error larger than 106.
The reason is that the optimal solution X∗ of (5.9), which is the initial value for Q,
is ill-conditioned (condition number of 3.4 105). Note that the original system is far
from being in PH form since δ∗ = 2.78 in (5.9).

Let us replace E with I4 for which the system is not stable because we have
maxi Reλi(E,A) = 67.6. This will illustrate the fact that the different initializations
may perform rather differently compared to the previous example. The LMI-based
initializations provide a solution with error 2.05, while the standard initialization
provides a solution with error 263.79 (note that ‖E‖2F+‖A‖2F+‖B‖2F+‖C‖2F+‖D‖2F =
6102). In this case, although the initial system is far from being stable, the LMI-based
initializations perform very well (note that δ∗ = 0.4705 is smaller than in the previous
case).

6.3. Mass-spring-damper system. Let us consider the following system:
(E,A) is generated as in [16, section 5.3], that is,
(6.3)

E =

[
V 0
0 Ip

]
, A = (J−R)Q, J =

[
0 Ip
−Ip 0

]
, R =

[
W 0
0 0

]
, Q =

[
Ip 0
0 H

]
,

where V � 0, W � 0, and H � 0 are respectively mass, damping, and stiffness
matrices of an MSD system. The entries of B ∈ R2p,m are generated using the
uniform distribution in the interval [0, 1]. Generating each entry of L ∈ Rm,m/2 using
the normal distribution (mean 0, standard deviation 1), we set D = LLT � 0 ∈ Rm,m,
which is rank deficient, and C = BTQ. This system clearly admits a PH-form and
therefore is PR (Theorem 3.2). To make this system non-PR, we perturb R by
R̃ = R+ ∆R as in [16] with

∆R =

[
0 0
0 −εIp

]
for some ε > 0. For the numerical experiment, we take such systems of size n = 2p =
20 and m = 4, and n = 2p = 40 and m = 6. We use ε = 2/(k n) for n = 20 and
ε = 1/(k n) for n = 40 with k = 1, 2, 3, 4.

As shown in Table 6.1, the corresponding perturbed systems do not admit a so-
lution to the LMIs (3.1) or, equivalently, δ∗ > 0 in (5.9). However, as ε decreases,
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Table 6.1
Optimal value δ∗ of (5.9), and largest real part of the eigenvalues of the pair (E,A) for the

different perturbed MSD systems.

n = 20, m = 4 ε = 2/n ε = 1/n ε = 3/(2n) ε = 1/(2n)
δ∗ of (5.9) 5.4269 2.3647 1.7452 0.1295

maxi Reλi(E,A) 2.5749 0.7514 0.0760 −0.0031

n = 40, m = 6 ε = 1/n ε = 1/(2n) ε = 1/(3n) ε = 1/(4n)
δ∗ of (5.9) 7.7355 0.6577 0.2488 0.1304

maxi Reλi(E,A) 0.9004 -0.0007 -0.0007 -0.0007
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Fig. 6.2. Evolution of the objective function for FGM with the different initializations for the
perturbed MSD system with n = 20, m = 4, and ε = 2/(nk), with k = 1 (top left), k = 2 (top right),
k = 3 (bottom left), and k = 4 (bottom right).

the system gets closer to a system admitting a PH-form in the sense that δ∗ de-
creases. Moreover, for smaller values of ε, the pair (E,A) is asymptotically stable; see
Table 6.1.

We compare four different initializations: the standard initialization (section 5.3.1),
LMIs + formula, and LMIs + solve (section 5.3.2), and the initialization using the
unperturbed system, that is, taking (J,R,Q) as in (6.3), F = B, P = 0, S = D,
and N = 0. We will refer to this last initialization as the “true” initialization as it
corresponds to the groundtruth unperturbed PH system.

Figure 6.2 (resp., Figure 6.3) displays the evolution of the objective function
values using these different initializations for n = 20 and m = 4 (resp., n = 40 and
m = 6) for the different values of ε. The weights in the objective function are all
equal to one.
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Fig. 6.3. Evolution of the objective function for FGM with the different initializations for the
perturbed MSD system with n = 40, m = 6, and ε = 1/(nk), with k = 1 (top left), k = 2 (top right),
k = 3 (bottom left), and k = 4 (bottom right).

Table 6.2 gives the final error obtained by the different algorithms with a maxi-
mum time limit of 300 seconds for n = 20 and 1000 seconds for n = 40. Before we
comment on these results, it is important to put these numbers into perspective: we
have ‖E‖2F +‖A‖2F +‖B‖2F +‖C‖2F +‖D‖2F = 5456 (resp., = 43078) for n = 20 (resp.,
n = 40). Hence, for example, the largest error of 58.00 (resp., 196.11) of LMIs + solve
for n = 20 (resp., n = 40) and k = 1 corresponds to a reasonable approximation,
although it is much larger than for some other approaches.

For both dimensions, we observe similar behavior by FGM for the different ini-
tializations:

• FGM converges in most cases at a sublinear rate; see Figures 6.2 and 6.3,
where the objective function values decrease roughly linearly in a logarithmic
time scale.

• For the true initialization, FGM recovers a solution with the smallest error
after sufficiently many iterations. This is rather natural since the initialization
corresponds to the original unperturbed PH system.

• For the standard initialization, FGM converges to systems with error larger
than with the true initialization and gets stuck is some local minima. This
illustrates the importance of choosing good initial points, although, as men-
tioned above, in terms of relative error, these solutions still provide good
approximations. For high perturbations (k = 1), it provides significantly
better solutions than the LMI-based initializations.
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Table 6.2
Comparison of the error obtained by the different initialization schemes on the systems from

sections 6.1, 6.2, and 6.3. For the 100 random initializations, we also report the mean and standard
deviation in parentheses (for the error obtained within 10 seconds). Bold indicates the lowest error
among all initializations.

Random Standard LMI+form. LMI+sol. True

(6.1) 0.4411 0.4411 4.07 3.26 /

Ê = I (0.52 ± 0.35)
(6.1) 0.1812 0.1812 2.27 2.22 /

(3.38 ± 11.9)

(6.2) 0.62 1.28 > 106 12.47 /
(172 ± 164)

(6.2) 1.39 263.79 2.05 2.05 /
E = I4 (63.43 ± 148)

n=20, k=1 1.90 26.69 54.22 58.00 3.38
(37.57 ± 22.20)

n=20, k=2 1.48 23.31 15.50 14.97 0.25
(34.52 ± 25.56)

n=20, k=3 0.01 7.82 0.11 0.11 0.01
(32.54 ± 30.38)

n=20, k=4 0.92 7.68 9.21 10−3 8.96 10−3 2.85 10−3

(33.91 ± 24.48)

n=40, k=1 66.19 36.26 185.93 196.11 1.05
(1708 ± 613)

n=40, k=2 13.38 30.42 0.33 0.37 0.08
(1815 ± 673)

n=40, k=3 299.65 30.31 0.06 0.06 0.02
(1578 ± 653)

n=40, k=4 18.32 32.05 0.09 0.03 0.02
(1704 ± 603)

• For LMIs + formula, the initial error is rather high (even for a small
perturbation ε), because the formula (3.3) does not provide a good estimate
of the PH-form when the system is not PH.
For large ε (k = 1), it is not able to recover a solution close to the one obtained
with the true initialization.
For ε sufficiently small, and after sufficiently many iterations, it is able to
recover a solution with error similar to that of FGM initialized with LMIs +
solve and close to that obtained with the true initialization. LMIs + formula
and LMIs + solve often converge to similar solutions, which can be explained
by the fact that both initializations use the same initial Q and Z.

• For LMIs + solve, FGM is able to recover better and better solutions as
ε decreases. For the largest ε (k = 1), it performs worse than the standard
initialization. For the smallest ε (k = 4), the initial point obtained with LMIs
+ solve has smaller error than the true initialization. Since the initialization
LMIs + solve computes the optimal values for J,R, P, S,N , and F for fixed
Q (at a larger initial computational cost), it is not surprising that it has a
much lower initial error than LMIs + formula.

Remark 6 (nearest strict PH system). The PH system obtained with FGM is not
necessarily strict since the cost matrix K can be rank deficient. For example, with the
true initialization for n = 20 and k = 1, it has 11 eigenvalues with modulus smaller
than 10−12. It is possible to impose that the system be strict (hence admissible, and
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ESPR if D + DT � 0; see Theorem 3.9) using a lower bound on the eigenvalues of
K, which does not make the projection step more complicated. Note that it is also
possible to use a lower bound ν for the eigenvalues of Z to have Q invertible (as
long as it is initialized with an invertible matrix). In fact, the objective function is

guaranteed to decrease under the updates of FGM; hence the term ‖ET − ZQ−1‖2F
remains bounded, which guarantees Q will be invertible since we would have Z � νIn.
We have included this option in our code.

6.4. Random initializations. So far, we have only used deterministic initial-
izations. As expected, in some cases, they do not lead to good solutions (see, for
example, Table 6.2). Therefore, an important direction for further research is to
design new initialization schemes, possibly depending on the problem at hand. For
example, we have seen in the previous sections that if the perturbed system is close to
being passive, then the LMI-based initializations perform well. We will confirm this
behavior on randomly generated systems in the next section. A simple initialization
scheme is to use random matrices. In this section, we perform some numerical exper-
iments to get some insight on whether this allows us to recover good solutions for the
systems presented in the previous sections.

Defining a Gaussian matrix as a matrix whose entries are generated randomly
using the normal distribution N(0, 1) (we used the function randn in MATLAB), we
initialize the variables as follows: Q is the product of a Gaussian matrix with its
transpose so that it is full rank,2 J , Z, and [ R S

ST P
] are Gaussian matrices projected

onto the feasible set, and F is chosen optimal using (5.6).
Table 6.2 summarizes the results using 100 random initializations with a time

limit of 10 seconds for Algorithm 1. However, the comparison is not fair for the MSD
systems of section 6.3 that were run 300 and 1000 seconds, respectively, for n = 20
and n = 40, but this would take a long time to run 100 times. Hence, for these
systems, Algorithm 1 was run for 300 and 1000 additional seconds only on the best
solution obtained after 10 seconds among the 100 random initial points.

In many cases, random initialization identifies good solutions; in fact, it achieves
the lowest error compared to the three deterministic approaches for all problems of
size n ≤ 20, except for the MSD system with n = 20 and k = 4. It even competes
similarly as the “true” initialisation for the MSD systems (providing a lower error for
n = 2 and k = 1, and the same error for n = 2 and k = 3). However, for the larger
MSD systems with n = 40, it is not able to compete with the LMI-based initializations
that perform well in this situation (for k ≥ 2). The reason is that the number of local
minima increases and the algorithm converges in the basin of attraction of worse
local minima: not surprisingly, the standard deviation of the errors obtained with
random initializations increases with the dimension of the problem. For example,
for n = 40 and k = 3, the error obtained is rather high, namely, 299.65. However,
running the algorithm with 100 other random initializations, we obtained an error of
28.07. For larger problems, a direction for further research is therefore to design more
sophisticated heuristics to identify better solutions and avoid the basin of attraction
of bad local minimizers.

6.5. Randomly generated systems. In the previous sections, we observed
that if the perturbed system is close to being passive, then the LMI-based initializa-

2For n large, the conditioning of Q can be bad (� 104). In that case, we compute the SVD of
Q and set the smallest singular values of Q to σmax(Q)/κ so that the conditioning of Q is a most κ
(we used κ = 104).
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tions are able to recover a passive system that is closer to the perturbed one than
the initial true passive system. This means that the LMI-based initializations pro-
vide an initial point that is in the basin of attraction of a very good local minimum
(possibly the global minimum, although this is difficult to verify). Intuitively, the
reason is that the LMIs (5.10) are only slightly perturbed, hence the solution will be
close to the solution of the system for the unperturbed passive system. This is closely
related to perturbation analysis of optimization problems [6]. Although we are not
able to prove this important observation (which would be a very interesting direction
of further research), we perform in this section additional numerical experiments to
support it.

To generate systems randomly, we use the same strategy as in the previous section
to obtain a PH system and set N = 0. Then, given the parameter δ, we perturb R
and S in the same way as follows: given a matrix X,

• compute its singular values decomposition [U,Σ, V ] with X = UΣV T ,
• set the smallest singular value in Σ to zero (note that, in many cases, R and
S already have a singular value equal to zero since they are the projection of
Gaussian matrices onto the PSD cone),

• compute Σ′ = Σ − δσmax, where σmax is the largest entry of Σ, and replace
X with X̃ = UΣ′V .

With this procedure, the perturbed R and S do not belong to the PSD cone, for any
δ > 0. Since S is the symmetric part of D, this will generate a perturbed system that
does not admit a PH form. The parameter δ is chosen such that a certain relative
distance ε is achieved between the randomly generated PH system (E,A,B,C,D) and
its perturbation (Ẽ, Ã, B̃, C̃, D̃):

‖(A− Ã, E − Ẽ, B − B̃, C − C̃,D − D̃)‖F
‖(Ã, Ẽ, B̃, C̃, D̃)‖F

= ε.

(We used a simple bisection scheme to find δ, given ε.) We will compare the three de-
terministic initialization schemes as in the previous sections (standard, LMI+formula,
LMI+solve) along with the “true” initialization, which is the original unperturbed ran-
domly generated PH system. Hence, the “true” initialization is guaranteed to achieve
a relative error smaller ε, since Algorithm 1 is guaranteed to decrease the objective
function at each step.

We generate systems with n = 20 and m = 5 as described above, and Table 6.3
summarizes the average relative error in percent among 10 such randomly generated
systems, with a time limit of 100 seconds, for different values of ε.

The standard initialization scheme consistently performs worse than the other ap-
proaches. LMIs + formula performs rather well, similarly to the “true” initialization,
while LMIs + solve surprisingly performs best in all scenarios, being able to identify
better solutions than the “true” initialization.

Table 6.3
Average relative error in percent for the different initialization schemes for randomly generated

systems of size n = 20 and m = 5.

ε Standard init. LMIs + formula LMIs + solve True init.
50% 17.95 11.21 2.26 13.38
10% 12.37 0.89 0.24 0.87
1% 12.60 0.52 0.0071 0.21

0.1% 15.89 0.19 0.0028 0.035
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This experiment allows us to confirm our previous observation: as the perturbed
system gets closer to a PH system, LMI-based initialization is able to recover better
and better solutions.

7. Conclusion and further research. In this paper, we have proposed the
first algorithm to tackle the nearest positive-real (PR) system problem that allows the
perturbation of all matrices (E,A,B,C,D) describing an LTI system. Our approach
combines a reformulation of PR systems as port-Hamiltonian (PH) systems and a
fast gradient method (FGM). We have illustrated the effectiveness of our approach
with several examples. In particular, we observed that if the initial system is close
to being PH, then the proposed LMI-based initializations allow us to recover nearby
PH systems. An interesting direction for further research would be to characterize
this rigorously, e.g., providing error bounds for the LMI-based initializations. Another
observation is that FGM is sensitive to initialization and does not always converge fast
(often at a sublinear rate); hence further research includes, for example, the design of
(i) new initialization schemes, (ii) more efficient algorithms (e.g., using second-order
information), and (iii) globalization approaches to escape local minima.

Acknowledgment. The authors thank the anonymous reviewers for their in-
sightful comments which helped improve the paper.
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